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A procedure is proposed for separating motions in perturbed systems that are reducible to standard,form with several fast phases. 
Non-resonant and resonant cases are considered. Systems with a hierarchy of phase rotation velocities are investigated. The slow 
motion is shown to converge to a diffusion process. An example is considered, namely, the perturbed motion of a gyroscope in 
g~ba~. 

1. We shall study systems with dynamics described by the equations 

x" =eF(x,O,~(t))+e2G(x,O), x ~  R n (1.1) 

O" =fo(x)+fJ-I(x,O,~(t))+f.2D(x,O), O~ R m 

F(x,O,~(t))= Fo(x,O)~(t), n(x,O,~(t)) = Ho(x,O)~(t) (1.2) 

where e is a small parameter, ~(t) ~ Rt is a stationary stochastic process with zero mean satisfying mixing 
conditions [1, 2], and F0, H0, G, D are matrices of the appropriate dimensions which are 2rt-periodic 
functions of each of the components Ok of the vector 0 and sufficiently smooth [1, 2] as functions of 
their variables. 

Special cases of system (1.1) were considered in [1, 2]. In [1] attention was devoted to a system with 
one fast phase (m -'= 1); conditions were formulated under which a stochastic averaging principle holds 
for such systems: as E ---> 0 the slow variable x(t, e) converges weakly [3] to a slow diffusion processx0(x), 
where x = e't. A similar result was established in [2] for multifrequency quasilinear systems with constant 
natural frequencies. We shall show here that a slow process also converges to a diffusion process in the 
more general system (I.1). 

We will first consider the non-resonant case. Assume that the natural frequencies (ok I> oM, > 0 satisfy 
the condition [4, 5] 

I(X,¢o)l /> 6(X) > 0 (1.3) 

for any vector X with integer components, for all x ~ S, where S is a bounded sphere in Rn. 
Let us also assume that the right-hand sides of Eqs (1.1) satisfy the conditions of [1, 2]. As we recall, 

these conditions are satisfied if the functions F0, H0, G, D, co are smooth enough and the stochastic 
process ~(t) satisfies mixing conditions, which are valid, e.g. for a normal stationary process. 

We will denote tlhe solution of system (1.1) byx(t, e) = xe(x) [1, 2] and define the limiting diffusion 
process Xo(X) as the solution of the stochastic differential equation 

dx o =b(xo)dx+G(xo)dw, x0(0)= x(0,e)= r (1.4) 

with "c = E2t, w(x) is a standard Wiener process, and the coefficients b(x) and o(x) are defined by the 
formulae 

b(x )=b](x )+b2(x)+g(x)  (1.5) 

where 

bj(x)=(Bjfx, O)>, 
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Bj(x,O)= 7 Bj(x,O,u)du (1.6) 
o 
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g(x) = (G(x ,O) )  

Bj = M[ F x (x, 0 + co(x)u, ~(t + u))F(x, O, ~(t))] (1.7) 

B 2 = M[F 0 (x, 0 + co(x)u, ~(t + u))H(x, 0, ~(t))] 

O(x)o'(x) = a(x); a#(x) = (Ao(x,O)) (1.8) 

Aij(x,O) = T Aij(x,O,u)du 
- o a  

A#(x,O,u) = M[F i (x,O + co(x)u,~(t + u))F j (x,O,~(t))] 

Throughout, angular brackets denote averaging over space 

2 x  2~ 2~t 

(f(x,O)) = (2~) -m J f(x,0)d0= (2~) -m J d0|... J f(x,O)dOrn 
o 0 0 

and F i is the ith component of the vector F. It is assumed that spatial averages and the expressions 
(1.6) and (1.8) exist for allx e S. 

The following extension of the results of [1, 2] is easy to prove. 

Theorem 1. Let the coefficients of the perturbed system (1.1) satisfy the above conditions. Then, if 
e ---> 0 and x e [0, L], the solution x~(x) converges weakly to the diffusion process Xo(X) defined by 
Eq. (1.4). 

Theorem 1 is an obvious extension of analogous statements in [1, 2], and its proof may be omitted. 

Remark. If the second-order coefficients depend on random perturbations and have the form G(x, 0, ~(t)), where 

MG(x, 0, ~(t)) = g(x, 0) (1.9) 

then 

2~ 

g(x) = (2~) -m I g(x,O)dO 
0 

In particular, i fMG = 0, theng(x) = 0. 
If the first-order coefficients have the form 

(1.10) 

where 

F(x, O, ~(t)) +f(x, 0), H(x, 0, ~(t)) + h(x, O) (I.II) 

2~ 

S f(x,O)dO=O (1.12) 
o 

then Theorem 1 remains valid, but an additional term occurs in the coefficient (1.5), corresponding to the second 
approximation of the averaging method for deterministic systems. In the general case this coefficient is rather 
complicated and it will not be written out, but a simpler special case will be used in Section 4. 

2. An implicit assumption in problem (1.1) is that all the frequencies 0~,(x), irrespective of whether they 
are incommensurable or not, are quantities of the same order of magnitude, i.e. ] o~(x)/o~(x) I = O(1) for 
any r, l = 1 , . . . ,  m whenx ~ S. In actual multidimensional systems the frequencies may differ considerably, 
so that for certain groups of frequencies t0~(x) and co~x) (r = 1 . . . . .  R, l = R + 1 . . . .  , m) we have 
I co,(x)kt~(x) [ = O(~). When the frequencies exhibit such strong incommensurability, the equations of motion 
depend on both slowly and rapidly rotating phases. In the general case the equations may be written as 

x" =EF(x,q~,O,~(t)), ~p" =eL2(x)+¢@(x, cp, O,~(t)) 

0" = co(x) + ¢.H(x, q),0, ~(t)) (2.1) 

terms (O(e 2) are not written out). It is assumed that ~p ~ Rk, the vector • has structure (1.2) and satisfies 
the same conditions as the vector H, while the "slow" frequencies f~(x) satisfy the incommensurability 
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conditions (1.3) and are sufficiently smooth functions ofx.  
Systems with hierarchies of frequencies arise both because of the varying scales of the physical 

parameters of  objects, or because of formal transformations of the equations of motion, e.g. when one 
is investigating resonant regimes [4, 5]. The basic features of  the theory of deterministic systems are due 
to the fact that the slow variable x and slow phase ~ vary at the same rate, i.e. the fight-hand sides of 
(2.1) are not averaged with respect t o ,  and the dimensions of  the vector of slow variables are increased. 

In (2.1) it is assumed that M~ = 0, i.e. MF = 0. This means [6] that over a time interval of length 
O(e -1) the variable x remains within a small neighbourhood of the initial position, but ~ turns out to 
be a fast phase relative to x. This means that it is possible to average with respect to q) and to separate 
out the variable x as e ~ 0. 

The possibility of successive averaging in deterministic systems with frequency hierarchies has been discussed 
[7]. We have investigated a stochastic system that can be reduced to the form (2.1) with two phases and a constant 
fast rotation frequency [8]. This special ease will enable us to demonstrate the possibility of averaging with respect 
to the slow phase cp. 

We shall show how to implement the principle of  separation of motions in system (2.1). Consider a 
slow diffusion process Xo(X), corresponding to a generating differential operator 

L o =~'(x)O/bx+½Trc~(x)O 2/Ox 2 

ct(x)=(a(x,~)), f~(x)=(b(x,~)+k(x,~)> 
(2.2) 

The matrix a(x, q~) is calculated by (1.8), with the variable x replaced by x, q~. Similarly, b(x, cp) is the 
coefficient calculated by (1.6) and (1.7) withx replaced byx, q~. The coefficient k(x, 9) is associated with 
the appearance of  the additional variable q~ 

k(x,~) = (K(x,q~,O)), K(x,~p,O) = ~ K(x,q),O,u)du 
o 

K(x, 9, 0, u) = M[F¢ (x, tO, 0 + to(x)u, ~(t + u))~(x, t O, O, ~(t))] 

Theorem 2. Assume that system (2.1) satisfies the conditions listed above. Assume in addition that 
the operator (2.2) iis uniformly parabolic and that the corresponding diffusion process Xo('C) is regular. 
Then, if E ~ 0, x e [0, L], the solution x~(x) of system (2.1) converges weakly to the process Xo(X) with 
generating operator (2.2). 

Proof. Note that when to(x) = 1 system (2.1) is precisely that studied in [8]. The proof  will not be 
carried out in full detail, as it duplicates that presented in [1]. 

Consider the vector of  slow variables x, tp = y, where we have put 

x t ( x ) = x ,  tO~(x)=9, Yt(x)=Y, x=82t  

A sufficient condition for xe(x) to converge weakly to Xo(X) is that [3] 

M y : f ( x t ( T ) )  ~ Mx:f(xo(T)) ,  e--* 0 (2.3) 

for any function f(x) e (74 with x e S, 9 e Rk, x ~ [0, 7], T ~< L. 
To prove (2.3), we use an auxiliary result that follows directly from a result in [8, Section 3]. Repeating 

the arguments of [8], except that instead of  averaging with respect to time we average with respect to 
phases (as done in Section 1), we conclude that as e ~ 0 the slow process ye(x) converges weakly to 
the (n + k)-dimensional diffusion process yo~(X) = xoe(x), 9or(X) corresponding to the generating 
differential operator  

L = ~-I~'(x)O I b~p + [b'(x, cp) + k'(x, q~)]~ / ~x + lc'(x, ~p)~ / O~p + 

+ ~ Tr[a(x, 9)02 / 0x 2 + d(x,9)32 //)x~0 + 8(x, ~)b 2 / 3tp 2 ] (2.4) 

The coefficients b, k and a in (2.4) were defined previously; the coefficients K, d and 8 are defined 
similarly, but as we shall soon see, their precise form is immaterial. It is obvious that all the coefficients 
are periodic in 9; we shall assume in addition that the means of these functions with respect to 9 exist 
for allx e S. 
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Let us explain our  assertion of weak convergence. Let 

My, x f ( x t ( T ) ) -  Vt(y,x), My,xf(xot(T))--- V(y,x) 

where V(y, x) = V(x, ~, x) is defined as a solution of  the following equation [3] 

aVl~ + LV = O, V(x, ~, T) =f(x) (2.5) 

To say that x~ converges weakly to x0t means that, for all x ~ S, ¢p ~ Rt  and sufficiently small e 

IVs(y,x)-  V ( y , x ) k  < CE (2.6) 

where C is a,constant independent of e. As in [8], it can be proved that the estimate (2.6) holds over a 
time interval in which the solution of Eq. (2.5) exists and is uniformly bounded (in the space H4,2), and 
the functional V~(y, x) exists and is uniformly bounded for sufficiently small ~ and all x E S, ~ E Rt. 

To prove the existence of  a solution of  Eq. (2.5) and estimate it, we shall use the averaging principle 
of  [6]. Together with (2.5), let us consider the averaged equation 

aV o I ~x + LoV o =0, Vo(x,T)= f(x) (2.7) 

where L0 is the operator (2.2). It follows from the properties of the coefficients of system (2.1) that 
¢x(x) ~ C2, ~(x) ~ C1. If at the same time f(x) ~ C4 and L0 is uniformly parabolic, then [9] a solution 
Vo(x, x) ~ C4~ exists such that [6] 

IV(x, lp,'c)- Vo(x,x)l---~O, I~--.)0 (2.8) 

where V(x, ~, x) is a solution of Eq. (2.5). The limit exists uniformly in x ~ S, ~ ~ R e for all x e [0, T]. 
Now it follows from the definition of the process Xo(X) that [3] 

Vo(x,x ) = Mx.xf(xo(X)) (2.9) 

Comparing (2.6) and (2.8) and using (2.9), we conclude that condition (2.3) holds over a time interval 
x ~ [0, T] in which the functional Ve(y, x) is bounded. As in [8], it is easy to prove that this estimate 
holds for any finite T ~< L, provided that x0(x) is a regular process. 

Remark. It is obvious that additional terms of order e 2 on the right of (2.1) will lead to the appearance of additional 
terms in the drift coefficient. 

3. We will now study the effect of random perturbations on dynamical processes in the near-resonant 
region, accompanied by violation of condition (1.3). Resonance phenomena in deterministic systems 
have been investigated fairly thoroughly [4, 5]; in particular, the existence has been established of a 
"jamming" effect of solutions near the resonance surface, where the latter is defined by 

(~.,¢o(x)) = 0, 1~.12 ~: 0 (3.1) 

Let us investigate the effect of random perturbations on the motion near the resonance surface. We 
again consider a system of type (1.1) 

x" =~F(x,O,~(t)), O" =o3(x)+f~H(x,O,~(t)) (3.2) 

where the vectors F and H are of the form (1.2). Let us assume that the system has one resonance surface 
satisfying (3.1). As in the deterministic ease, we introduce a new variable 

q~ = O.,e) = (A,¥)+ Z.,.em (3.3) 

where ~ are the components of  the vector ~, Ak = kk, Yk = Ok, k = 1 . . . .  , m - 1, km ~ 0. Obvious 
algebra reduces (3.2) to the  following form [4, 5] 

x" = ~(x,q~,¥,~(O), qr = (X, co(x))+ E,l~(x,q~,¥,~(O) (3.4) 
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~" = ~(x)  + eW(x, qL ¥, ~(t)) 

where X = Xo~(t), Xo = Fo(x, ¥, ~.ml[tp - (A, ¥)]) and so on, ~k(x) = ¢Ok(x), k = 1 , . . . ,  m - 1. 
Remembering that we are considering motion in the neighbourhood of the resonance surfaces, we 
introduce a new variable q(t, e) by the formula [4, 5] 

(X, to(x))  = ~ ,  ~t = e ~ (3.5) 

and transform (3.4) to a form involving new fast and slow variables 

y" =~t2y(y,~,~,laq,~(t)), q" =~tQ(y, tp, v ,pq,~(t))  (3.6) 

¢p" = laq + l.t2~(y, tp, ~,  rat/, ~(t)), ~" = ~(y,  ilq) + ~tZ~F(y, tp, ~,  laq, ~(t)) 

where Yk = Xk, k = 1 . . . .  , m - 1; the coefficients of this system are obtained by appropriate 
transformations i:a (3.4) with due attention to the change of variable (3.5) (see [5]). The functions on 
the right of (3.6) are periodic in the phases tp and ¥. It follows from the conditions of Section 1 that 
fl > 0, and the oandition that the resonance surface should not be cut implies that q # 0 (to fix our 
ideas, let q > 0). Consequently, the conclusions of Section 2 are applicable to system (3.6). 

There are four different time-scales in Eqs (3.6): a fast phase ¥, a slow phase tp varying in the 
time scale ~ ,  a slow process q(t) with time-scale ~t2(t) and a slow process y(t) with time-scale lx4t 
(the last two follow obviously from the condition MY = MQ = 0, which in turn follows from the 
forms of the functions Y and Q). Thus the variable y may be assumed constant over a time interval 
O0t-2): y(t, ~t) = y (0, ~t) = Yo. 

Let us rewrite (13.6) retaining only the terms essential for the analysis 

q'=gQ°(tP'W'~(t))+ .... tP" = ktq+ .... W = ~°  +l~QIq+"" (3.7) 

Qo=Q(yo,tp, v/,O,~(t)), ~o=I)(yo,O),  f~l=~y(Yo,O) 

Terms of order ~t 2 are omitted, as their means vanish (cf. the remark at the end of Section 1). System 
(3.7) is obviously a special case of (2.1). 

Applying the conclusions of Section 2 to (3.7), we conclude that the slow variable q(t, e) is 
approximated over a time interval of length 0(11-') by a slow diffusion process qo(s) satisfying the 
equation 

dqo = odw, s = ~ = e½t (3.8) 

where 

if:' =(D(tp, V)), D(qh~)= 7 MQo(tP, V+~oU,~(t+u))Qo(~,v/,~(t))du (3.9) 

The angular brackets denote averaging over phases; that D is independent of t follows from the fact 
that ~(t) is a stationary process and from the form of the function Q0. 

Thus, qo(s) is a normal process with zero mean and variance D(s) = a2s. This result implies that, 
over a time interval of length O(e-1), the trajectory of the perturbed system remains in a small O(e -1/2) 
neighbourhood of the resonance surface, but, because of the increase in the variance, it tends to leave 
that neighbourhood. The conclusion is especially easy to interpret in the problem of forced rotations 
of a single-frequency non-linear system, when relation (3.1) is 

~lto(x)+ 7~2to0 = 0 (3.10) 

where to(x) is the natural frequency of the system and too is that of the perturbation. It follows from 
our discussion that this system cannot sustain a steady rotatory regime with a frequency to = -2~kiqto0 . 
The frequency fluctuations are determined by Eqs (3.8) and (3.9). 

If we retain higher-order terms in the equations of motion, we must put 

x" = •F(x, O, ~(t)) + I~G(x ,  O) (3.11) 

O" = to(x) + ett(x,  O, ~(t)) + e~D(x,O) 
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where the terms G and D have the same meaning as in (1.1). Then the transformed version of Eq. (3.7) 
will be 

q" = gQ0 (tp, ~ ,  ~(t)) + ~2QI (9, ~ )  (3.12) 

qr = J.tq, W = ~o  +l.t.Qiq 

where Q1 is an additional deterministic term, obtained by transforming the function G. Equations (3.8) 
now involve an additional drift coefficient 

dq o = bds + odw, b = (Q1 (9, ~) )  (3.13) 

In that case qo(s) is a normal  process with m e an  m(s) = q(O) + bs and variance (3.9). 

4. To illustrate this, let us consider a perturbed rotating gyroscope. Previous publications [5] have studied the 
motion of a balanced gyroscope in gimbals acted upon by a small periodic torque; the existence of stable periodic 
motions has been established. Attention has also been given [10] to oscillations of an unbalanced gyroscope acted 
upon by a random torque of the white-noise type, and the domains of existence of steady-state solutions have been 
studied. 

Let us consider the motion of an unbalanced gyroscope in gimbals mounted on an oscillating base. Suppose 
that a small periodic torque and a small torque due to friction forces are applied to the axis of the internal gimbal. 
We shall study the effect of random oscillations of the base on the rotation of the internal gimbal and the mean 
drift velocity of the gyroscope. 

We write the equations of motion as [5, 10] 

0'" 4- e.u(O) = e(k sin f~t + ~( t )cosO)-  ~2vO" (4.1) 

y = re(l-cos0)(l  -~cos  2 0) -1 (4.2) 

u(O) = dU I dO, 2U(0) = -~cose + ( l -  cose) 2 [(1 - tc cos 2 0)] -I (4.3) 

where 0 is the angle of mtatinn of the internal ~mbal, y is the drift velocity of the gyroscope, the prime denotes 
differentiation with respect to the dimensionless "nutational" variable t, and I, ~ m and [] are constants expressed 
in terms of the inertial and kinetic parameters of the gyroscope and the gimbals [5, 10]. The small parameter ~ on 
the right of (4.1) characterizes the smallness of the perturbing and dissipative factors, while the small parameter 
on the left means that the dimensionless velocity of rotation of the internal gimbal 0" is large compared with the 
dimensionless drift velocity y of the gyroscope, and the rotation of the gimbal is nearly uniform. The stochastic 
process ~(t) defines the acceleration of the base; it is assumed that ~(t) is a stationary process with zero mean, 
correlation function K(t) and spectral density S(t0). 

The energy integral of the conservative system corresponding to the right-hand side of (4.1) is 

(0 ' )  2 + 2eU(O) = x 2 (4.4) 

To apply the asymptotic method, we treat (4.4) as a change of variables. Using the fact that e is small, we can write 

0" = x -  eU(O)x  - !  + e2... (4.5) 

Substituting (4.5) into (4.1), we obtain a system of equations 

x '  = e(l - ~U(O)x -2 )(ksln ¥ + [~(t)cose)-  e2ve ' - F.2x-2u(e)u(e~ 

e,= x-eu(e)x-~ +s 2 .... v ' = ~  (4.6) 

In the non-resonant case (x ;efl) the process x(t, ~.) converges weakly to a slow diffusion process (1.4). In view 
of (4.6), the coefficients of Eq. (1.4) may be written as 

/>2=0, bl=J$2$x(x)/4=ax(x)12,  a(x)=[lZS(x)i2 (4.7) 

It follows fi'om (1.4) and (4.7) that the probability densityp(x, x) of the processx0(x) is determined by the equation 
[31 
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ap + a [ (  l l a-~-(~)--o 

This equation has a steady-state solution 

33 

(4.8) 

I x ] p(z)= Cexp -2J vz dz 
L o 

0.9) 

where the coefficient C is determined by normalization. If ~(t) is white noise with a fixed spectral density So, then 

p (x )=Cexp[ -vx  2/a] ,  a =~2S 0 / 4  (4.10) 

i.e. x0(~) is a normal stationary process. Clearly, a steady-state solution exists only when v > 0. 
We now investigate the perturbed resonance regime. To allow for the effect of dissipation, let us write the equation 

of motion as 

O"+l.t2u(e) = ~2(ksinD.t +~(/)cosO)-Ia3vO ', V. 2 = e 0.11) 

Using the change of variable (4.5) and putting x - t2 = ttq, 0 - ¥ = ?, we write 

q" = ~ t ( k s i n ~ + ~ ( t ) c o s ( ~ P + V ) ) - ~  t2vO', ¢P'=Hq, ~ / ' = f ~  (4.12) 

It follows from (4.1D), (3.12) and (3.13) that the perturbation q(t, ~t) converges weakly to a diffusion process (3.13) 
with drift coefficie~Lt -f~v and variance (3.9) with coefficient ~ = a(f~) = 152S(f~)/2. 

The average dri~I velocity of the gyroscope 

2x 
m J ( / - cos0) ( l -Kcos20) - Id0  (4.13) 

(Y>-- Y~ o 
in the resonant and non-resonant cases is determined just as in the deterministic problem; it does not depend on 
the perturbing factors. 

The  research repor ted  here  was suppor ted  financially by the Russian Fund for  Fundamenta l  Research 
(93-012-874). 
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